


P $A \quad R=4 m g$ Cobo $2 m g$
$\rightarrow T \rightarrow \mu R \sim 4 m g$ dibo $=4 m a$. (5)
Q $\quad \downarrow$ simg $T=8 \mathrm{ma}$

$$
\begin{align*}
& a=\frac{g}{24}(15-4 \sqrt{3})  \tag{5}\\
& T=\frac{g}{3}(9+4 \sqrt{3})
\end{align*}
$$

(5)
$O T$ is a perpenciocular to LMN let 1 b a unit vector in the direction $\overrightarrow{\text { oT }}$

$$
\underline{P}+\underline{Q}=\underline{R}
$$

$$
\underline{P} \cdot \underline{L}+Q \cdot i=\underline{R} \cdot i
$$

$|P| \cdot 1 \cdot \cos (\alpha+\beta)+\mid(|\alpha| \cdot 1 \cdot \cos \theta=|R| \cdot 1 \cos \alpha$

$$
\begin{equation*}
P \cdot \frac{Q T}{O L}+Q \cdot \frac{O P}{O M}=R \cdot \frac{D T}{O N} \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
\Rightarrow \frac{P}{O L}+\frac{Q}{O M}=\frac{R}{O N} \tag{5}
\end{equation*}
$$

$\frac{A C}{C B}=\frac{\mu}{\lambda}$
$\overrightarrow{A B C}=\mu \overrightarrow{C B}$

$\lambda(\leq-a)=\mu(\underline{b}-\leq)(5)$
$(\lambda+\mu)==\lambda \underline{a}+\mu b$
$\subseteq \subset \frac{\lambda a+\mu b}{\lambda+\mu}(5$
$\alpha \mathbb{A}+\beta \underline{b}+\gamma \leq=2+\alpha+\beta+\gamma=0$
$\alpha a+\beta b=-\gamma \leq \quad \alpha+\beta=\sim \gamma$
$\therefore \frac{\alpha a+\beta b}{\alpha+\beta}=-\frac{\gamma s}{-\alpha}$
$\Rightarrow \frac{\alpha a+\beta b}{\alpha+\beta}=\leq$
$A, B, C$ are collinem. (9)

A


For Ring $\leftarrow P \operatorname{lin}^{4}-B^{-\mu R 00}$
PR-K-TS $x=0$ (5)
for $R_{0} d \psi$ Ring $A 5$
$4 \cos \alpha+k-w)-4 w a \cos k=O$

$$
\begin{equation*}
R=a \omega \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\frac{(2)}{A} \Rightarrow \tan x=\frac{\operatorname{Rin} x}{\mu R}=\frac{1}{2 \mu} \tag{5}
\end{equation*}
$$

$$
\frac{\tan 2}{}=\frac{1}{2 \mu}
$$

$$
P\left(A \cap B^{\prime}\right)=\frac{8}{25}, P\left(A^{\prime} B E\right)=\frac{11}{100}
$$ $P(A \cup B)=\frac{13}{20}$

$I P(A \cup B)=P\left(A^{2} \cap B^{\prime}\right)+P\left(A^{\prime} B\right)+P(A \cap B)(S$
$\frac{13}{20}=\frac{8}{25}+\frac{11}{100}+P(A \cap B)$

$$
\begin{aligned}
& 20 \\
& P(A O B)=\frac{20}{100} \\
& P(A)=P(A B B S+
\end{aligned}
$$

$$
\begin{align*}
& P(A D B)  \tag{5}\\
& \text { II } P(A) \\
&=P(A B B)+P\left(A B^{\prime}\right) \\
&=22+8=34
\end{align*}
$$

$$
\begin{aligned}
& =\frac{2^{2}}{100}+\frac{8}{25}=\frac{34}{100}
\end{aligned}
$$

$$
\begin{equation*}
I I P(B)=P(A n B)+P\left(A^{\prime} \cap B\right)^{100}=\frac{3 B}{100}(5) \tag{5}
\end{equation*}
$$

$$
\text { E } P(A / B)=\frac{P(A / S)}{P(B)}=\frac{2}{3}(5)
$$

25

$12 b$

using Consenvation of Energy.

$$
\frac{1}{2} m u^{2}-\sin g 3 a \cos \theta=\frac{1}{2} m v^{2}-\ln g \cdot 3 \pi \delta \frac{\beta}{15}
$$



$$
\begin{equation*}
T=m g[3 \sin \beta-1] \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
V=0 \Rightarrow \beta=\pi / 6 \tag{9}
\end{equation*}
$$

$\Rightarrow T>0$

(13)(1) $T_{0}=4 . m g$

$$
\frac{\lambda_{1}}{3 a}=2 a=4 m g
$$

(iv)
a) $\bar{\rho}$

$$
4 m g-T=4 m \ddot{x}
$$

(14)
(C)

$$
\begin{equation*}
\operatorname{cin} 0-\frac{2}{8} \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
t_{C, B}=\frac{\pi}{2 w} \tag{5}
\end{equation*}
$$

$$
V^{2}=3 \operatorname{ag}(2 \sin 3-1)
$$

$$
\begin{align*}
\text { Totattemc } & =\frac{3}{2 \omega}+\frac{\pi-\theta}{\omega}  \tag{5}\\
& =\frac{1}{\omega}\left(\frac{\pi}{2}+\pi-\theta\right) \\
& =\frac{1}{\omega}\left(\frac{3 \pi}{2}-\theta\right) \\
& =\sqrt{2 a}\left[\frac{3 \pi}{2}-\cos ^{-1} \frac{2}{3}\right] \tag{10}
\end{align*}
$$



$$
\begin{align*}
\overrightarrow{O C} & =\overrightarrow{O A}+\overrightarrow{A C} \\
\underline{c} & =a+\lambda(\overrightarrow{A B})  \tag{10}\\
& =a+\lambda(b-a)  \tag{5}\\
& =(1-\lambda) \underline{a}+\lambda b \tag{5}
\end{align*}
$$

let $1-\lambda=\alpha$

$$
\begin{equation*}
\lambda=6 m g \tag{5}
\end{equation*}
$$

$$
\begin{aligned}
& \therefore \lambda=1-x \\
& 5.5
\end{aligned}
$$



Let $M$ is on $A D$ and $N$ is on $B C$ from the first, parf $\underline{m}=\lambda \underline{a}+(1-\lambda) \underline{b}$ (10)
$m=\mu^{3} a+(1-\mu) b$
where $\lambda$, $u$ areparametors to find the in ter sesting perinit

$$
\begin{gathered}
\frac{m}{n}=\underline{a} \\
\Rightarrow \lambda+(1-\lambda) 5 b=\mu 3 a+(4-\mu) \underline{b} \\
(\lambda-3 \mu) a+[5(1-\lambda)-(1-\mu)] b=q
\end{gathered}
$$

$$
\Rightarrow \lambda-3 \mu=0+5 \lambda-\mu=4 \text { (5) }
$$

$$
\begin{align*}
& \mu=2, \lambda  \tag{5}\\
& 6 a+\frac{5}{7} b
\end{align*}
$$

$$
m=\frac{6 a+5}{7} b \quad{ }^{t}
$$

$M$ divides $A B$ in $1: 6$

| 14b), $\begin{align*} & \vec{x}=7 \\ & \Gamma y=a, 3 \tag{5} \end{align*}$ $\text { of } \begin{gather*} a \cdot 2+1,3-2 \times 4+5,3+4+2= \pm 24  \tag{10}\\ 2 a+18= \pm 24  \tag{10}\\ 3 a=6,-42 \end{gather*}$ $a=(5)^{3},-21(5)$ $\begin{align*} & a=3 \Rightarrow F=7 i  \tag{5}\\ & a=2 i \Rightarrow F=7^{2}-24 j \\ & a=3 \Rightarrow G=245 \end{align*}$  $d=\frac{G_{7}}{7}=\frac{24}{7}$ <br> Five Eqk of the luce of action of <br> the equeralant fore is $y=-24$ (5) | forAB B $\begin{array}{r} \frac{w}{4} \cdot 2 a-w \cdot a \cos \alpha=0 \\ \cos a=\frac{1}{2} \\ \alpha=\frac{\pi}{3} \quad(5) \\ =\frac{w}{4} \cos 30=\frac{\sqrt{3} w}{8}  \tag{5}\\ =w-T \sin 30 \\ =w-\frac{w}{4} \cdot \frac{1}{2} \\ =\frac{7 w}{8} \end{array}$ $\rightarrow x=\frac{w}{4} \cos 30=\frac{\sqrt{3} w}{8}$ $\uparrow y=W-T \sin 30$ <br> for $B C \subset D$ <br> Reastion on $A$ is in the direction $\overrightarrow{A B}$ for the equalicibrum of system, therse forces $100, P, R$. Their tive of action of the se forces mact at $D$. <br> faae is a Rbomipurnal $\Rightarrow$ ef $=200$ <br> (30) $\begin{align*} & \frac{d e}{\sin 15}=\frac{a d}{\sin 20}=\frac{200}{\sin 45}  \tag{10}\\ & a d=100 \sqrt{b}, d e \Rightarrow 100(\sqrt{3}-1)=d e \\ & a c=200=c f \end{align*}$ |
| :---: | :---: |


(16) as by symmatry cam hias on median tivow $A$

$\frac{M G}{G D}=\frac{6}{10}=\frac{3}{3^{2}}$

$$
\begin{equation*}
M G=\frac{3}{8} \cdot 2 a=\frac{3}{4} a \tag{5}
\end{equation*}
$$

$$
A G=2 a+\frac{3}{4} a=\frac{11 a}{4} \text { S }
$$



$$
\begin{align*}
P(E / R) & =\frac{P(E) \cdot P(R / E)}{P(R)}  \tag{10}\\
& =\frac{2}{5} \cdot \frac{3}{5} \\
& =\frac{12}{41}(10) \tag{10}
\end{align*}
$$

$$
\begin{equation*}
=\frac{43}{50} \tag{5}
\end{equation*}
$$

c) $R=\{$ Student receiving the messagit $\}$
(7) a) $P(A / B)=\frac{P(A B B)}{P(B)}$
(10) $f(B)>0$
b) $A_{i}$ are partitions in sample-
space S: \& $B$ is a event
$P(B)=\sum_{2} P\left(A_{2}\right) \cdot P\left(B / A_{l}\right)$


$$
\left(30^{\circ}\right.
$$

$(30)$


$\begin{aligned}\left(3 \pi a^{2 x}+20 a\right) \rho \bar{x} & =2 \pi a^{2} \rho \cdot 9 a+4 a \rho \cdot 6 a+16 a \rho \cdot \frac{5 a}{4} \\ \bar{x} & =9 \pi a^{2}+22 a \cdot \text { (10) }\end{aligned}$

$$
\begin{aligned}
\tilde{x} & =\frac{9 \pi a^{2}+2 \pi a}{\pi a+1} \\
\left(2 \pi a^{2}+20 a\right) \rho & =2 \pi a^{2} \rho \frac{a}{2} \\
\bar{y} & =\frac{\pi a^{2} \rho}{2(\pi a+10)}
\end{aligned}
$$



$5 x=2(1-\cos \theta)$

$$
\begin{aligned}
\frac{d x}{d \theta} & =2 \sin \theta=4 \sin \theta / 2 \cos \theta / 2 \\
y & =2(\theta+\sin \theta) \\
\frac{d y}{d \theta} & =2(1+\cos \theta)=4 \cos ^{2} \theta / 2 \\
\frac{d y}{d x} & =\frac{d y}{d \theta} \times \frac{d \theta}{d x}
\end{aligned}=\frac{4 \cos \theta / 2}{4 \sin \theta / 2 \cos \theta / 2}
$$

$$
\text { point }(4,2 \pi) \text { onc } \Rightarrow \theta=\pi
$$

$$
\begin{equation*}
\left(\frac{d y}{d x}\right)_{\theta=\pi}=0 \tag{5}
\end{equation*}
$$

Equation of the tangent is

$$
\begin{equation*}
y=2 \pi \tag{5}
\end{equation*}
$$

25
6. $\frac{d}{d x}\left\{x \sqrt{1-x^{2}}\right\}$

$$
\begin{equation*}
=x \frac{1(-2 x)}{2 \sqrt{1-x^{2}}}+\sqrt{1-x^{2}} \tag{10}
\end{equation*}
$$

$$
=\frac{1-2 x^{2}}{\sqrt{1-x^{2}}}
$$

$$
\begin{aligned}
\int \frac{1+x^{2}}{\sqrt{1-x^{2}}} d x & =-\frac{1}{2} \int \frac{1-2 x^{2}}{\sqrt{1-x^{2}}}+\int \frac{\frac{3}{2}}{\sqrt{1-x^{2}}} d x \\
& =-\frac{1}{2} x \sqrt{1-x^{2}}+\frac{3}{2} \sin ^{-1} x+c
\end{aligned}
$$

(5) 25

The volume generated

$$
\begin{align*}
& =\int_{0}^{1} \pi\left(e^{x}\right)^{2} d x  \tag{10}\\
& =\int_{0}^{1} \pi e^{2 x} d x  \tag{5}\\
& =\pi\left[\frac{e^{2 x}}{2}\right]_{0}^{1} \\
& =\frac{\pi}{2}\left(e^{2}-1\right) \tag{5}
\end{align*}
$$



0

$$
\begin{aligned}
& 9-S^{\prime}=0 \\
& (29+2) x-6 y+6=0 \\
& (1,-2) \Rightarrow 2(9+1)+12+6=0 \Rightarrow 9=-10 \\
& S=x^{2}+y^{2}-20 x-2 y=0(5) 25
\end{aligned}
$$



$$
\begin{aligned}
& A+B=C \\
& \frac{\tan A+\tan B}{1-\tan A \tan B}=\tan (A+B)=\tan C \\
& \frac{x}{x-1}+\frac{x+2}{x+3} \\
& \frac{x-x+x+2)}{(x-1)(x+3)} \\
& \frac{2 x^{2}+x+x-2}{3}=\frac{2}{3} \\
& x^{2}+2 x-1 \\
& x=-1
\end{aligned}
$$

## 11 (a)

Suppose that 1 is a root of $(p+1)^{2} x^{2}+8 x+2(p+1)=0$.

By substituting $x=1$, we must
have $(p+1)^{2}+8+2(p+1)=0$ (5)
This is impossible, as $p>-1$ implies that $(p+1)^{2}+8+2(p+1)>0$ $\therefore 1$ is not a root of $(p+1)^{2} x^{2}+8 x+2(p+1)=0$

The discriminant

$$
\Delta=8^{2}-4(p+1)^{2} 2(p+1)
$$

$$
=8\left\{8-(p+1)^{3}\right\} \geqslant 0(\because-1<p \leq 1)
$$

$\therefore \alpha$ and $\beta$ are both real (5)

$$
\begin{align*}
\alpha+\beta & =-\frac{8}{(p+1)^{2}}, \text { and } \alpha \beta=\frac{2}{p+1} \\
\frac{1}{(\alpha-1)(\beta-1)} & =\frac{1}{\alpha \beta-(\alpha+\beta)+1} \\
& =\frac{1}{\frac{2}{p+1}+\frac{8}{(p+1)^{2}}+1}  \tag{5}\\
& =\frac{(p+1)^{2}}{p^{2}+4 p+1 q}(5) \\
\cdots & =\left(\frac{30}{p+1}+\frac{8}{(p+1)^{2}}\right) \cdot \frac{(p+1)^{2}}{p^{2}+4 p+11} \\
& =\frac{4(p+3)}{p^{2}+4 p+11}
\end{align*}
$$

(5)

$$
\begin{align*}
& \frac{\alpha}{\alpha-1} \cdot \frac{\beta}{\beta-1} \\
& =\frac{\alpha \beta}{(\alpha-1)(\beta-1)} \\
& =\frac{2}{p+1} \cdot \frac{(p+1)^{2}}{p^{2}+4 p+11}  \tag{5}\\
& =\frac{2(p+1)}{p^{2}+4 p+11} \tag{5}
\end{align*}
$$

Hence, the required quadratic equation is given by
$x^{2}-\frac{4(p+3)}{p^{2}+4 p+11} x+\frac{2(p+1)}{\left.p^{2}+4 p+1\right)}=0$
$\left(p^{2}+4 p+11\right) x^{2}-4(p+3) x+2(p+1)=0$
$\cdots$
$\frac{\alpha}{\alpha-1}+\frac{\beta}{\beta-1}=\frac{4(p+3)}{(p+2)^{2}+7}>0(\because p>-1)$
$\frac{\alpha}{\alpha-1} \cdot \frac{\beta}{\beta-1}=\frac{2(p+1)}{(p+2)^{2}+7}>0(\because p>-1)$
Hence, both of these roots are positive
(b) $a x^{n}+b=\left(x^{2}-1\right) \phi(x)+x+2$

$$
\begin{equation*}
x=1 \Rightarrow a+b=3 \tag{5}
\end{equation*}
$$

$x=-1 \Rightarrow-a+b=1$ (5)
$a=1, b=2$
$x^{n}+2 \equiv\left(x^{2}-1\right) \phi(x)+x+2$
$n=7 \Rightarrow x^{7}+2 \equiv\left(x^{2}-1\right) \phi_{1}(x)+x+2$ (5)
$n=5 \Rightarrow x^{5}+2 \equiv\left(x^{2}-1\right) \phi_{2}(x)+x+2$ (5) ${ }^{(2)}$
$n=3 \Rightarrow x^{3}+2 \equiv\left(x^{2}-1\right) \phi_{3}(x)+x+2$ (5) ${ }^{(3)}$
(1) + (2) $+0 \Rightarrow$
$x^{7}+x^{5}+x^{3}+6 \equiv\left(x^{2}-1\right)\left[\phi_{1}(x)+\phi_{2}(x)+\phi_{3}(x)\right]$
(5) $+3 x+6$
$\therefore$ Remainder $=3 x+6$ (5)
$\frac{1}{\alpha}=\frac{\sigma_{0}-1}{\alpha} ; 1-\frac{1}{\beta}=\frac{\beta-1}{\beta}$
Replacing $x$ by $\frac{1}{x}$ in ( (x) $^{2}$; we get
$\left(p^{2}+4 p+11\right)\left(\frac{1}{x}\right)^{2}-4(p+3) \frac{1}{x}+2(p+1)=0$ $2(p+1) x^{2}-4(p+3) x+p^{2}+4 p+11=0$

12
(a)

$$
\begin{align*}
& \text { (i) } \begin{aligned}
{ }^{9} C_{3} & =\frac{9!}{6!\times 3!} \\
& =84 \\
\text { (ii) }{ }^{18} C_{3} & -{ }^{9} C_{3} \\
& =816 \\
& =84 \\
\text { (iii) }{ }^{6} C_{1}{ }^{6} C_{1}{ }_{1}^{6} C_{1} & =216 \\
\text { (iv) }{ }^{3} C_{1}{ }^{2} C_{1}{ }_{1}^{1} C_{1} \times 3 & =18
\end{aligned}
\end{align*}
$$

(b)

$$
\text { (b) } u_{r}=\frac{r+3}{r(r+1)(r+2)}, v_{r}=\frac{2 r+3}{r(r+1)}
$$

$$
V_{r}-V_{r+1}
$$

$$
\begin{equation*}
=\frac{2 r+3}{r(r+1)}-\frac{2 r+5}{(r+1)(r+2)} \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
=\frac{(2 r+3)(r+2)-(2 r+5) r}{r(r+1)(r+2)} \tag{5}
\end{equation*}
$$

$$
=\frac{2 r^{2}+7 r+6-2 r^{2}-5 r}{r(r+1)(r+2)}
$$

$$
\begin{equation*}
=\frac{2(r+3)}{r(r+1)(r+2)} \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
=2 u_{r} \tag{5}
\end{equation*}
$$

)

page. 4

$$
=\frac{5}{4}-0
$$

$$
=\frac{5}{4}
$$

$\therefore \sum_{r=1}^{\infty} u_{r}$ is convergent and the

$$
\begin{aligned}
& \frac{\text { sum is }}{1=1} 5 \\
& \sum_{r=3}^{\infty} 3 u_{r} \\
& =3 \sum_{r=1}^{\infty} u_{r}-3 u_{1}-3 u_{2} \text { (5) }
\end{aligned}
$$

$$
\begin{equation*}
=3 \times \frac{5}{4}-3\left(\frac{2}{3}\right)-3\left(\frac{5}{24}\right) \tag{5}
\end{equation*}
$$

$$
=\frac{9}{8} / / \quad 5
$$

$\square$

$$
\begin{aligned}
& 2 u_{r}=v_{r}-v_{r_{+}}
\end{aligned}
$$

$$
\begin{aligned}
& r=n ; 2 u_{n}=y_{n}-v_{n+1} \\
& 2 \sum_{r=1}^{n} u_{r}=v_{1}-v_{n+1} \\
& =\frac{5}{2}-\frac{2 n+5}{(n+1)(n+2)} \text { (5) } \\
& \Rightarrow \sum_{r=1}^{n} u_{r}=\frac{5}{4}-\frac{2 n+5}{2(n+1)(n+2)} 5 \\
& \lim _{n \rightarrow \infty} \sum_{r=1}^{n} u_{r}=\lim _{n \rightarrow \infty}\left\{\frac{5}{4}-\frac{2 n+5}{2(n+1)(n+2)}\right\} \\
& =\lim _{n \rightarrow a^{+}}\left\{\frac{5}{4}-\frac{\frac{2}{n}+\frac{5}{n^{2}}}{2\left(1+\frac{1}{n}\right)\left(1+\frac{2}{n}\right)}\right\}
\end{aligned}
$$

$z \in \mathbb{C} \quad z=x+i y \quad x, y \in \mathbb{R}$

$$
\text { a) } \begin{align*}
&|z|=\sqrt{x^{2}+y^{2}} \quad \bar{z}=x-i y  \tag{5}\\
& \text { 1. } z, \bar{Z}=(x+i y)(x-i y)=x^{2}-(-i y)^{2} \\
&=x^{2}+y^{2}=|z|^{2}(5 \\
& z+\bar{z}=x+i y+x-i y=2 x=2 \operatorname{Re} z  \tag{5}\\
& z-\bar{z}=x+i y-x+i y=2 i y=2 i \cdot \operatorname{Im} z \\
& 5
\end{align*}
$$

$$
\begin{align*}
& \text { b) } \\
& z=x+i y=\sqrt{x^{2}+y^{2}}\left(\frac{x}{\sqrt{x^{2}+y^{2}}}+\frac{i y}{\sqrt{x^{2}+y^{2}}}\right) \\
& =|z|(\cos \theta+i \sin \theta) \\
& |z|=\sqrt{x^{2}+y^{2}} \operatorname{Arg}(z)=\theta \\
& \cos \theta=\frac{x}{\sqrt{x^{2}+y^{2}}}, \sin \theta=\frac{y}{\sqrt{1 x^{2}+y^{2}}} \\
& z_{1}=r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right) \quad\left|z_{1}\right|=r_{1} \\
& \operatorname{Arg}\left(2_{1}\right)=\theta_{1} \\
& z_{2}=r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right) \quad\left|z_{2}\right|=r_{2} \\
& \operatorname{Arg}\left(z_{2}\right)=\theta_{2} \\
& z_{1} \cdot z_{2}=r_{1} \cdot r_{2}\left(\cos \theta_{1}+i \sin \theta_{1}\right)\left(\cos \theta_{2}+i \sin \theta_{2}\right) \\
& =r_{1} r_{2}\left(\left(\cos \theta_{1} \cos \theta_{2}+i^{2} \sin \theta_{1} \sin \theta_{2}\right)(5)\right. \\
& +i\left(\sin \theta_{1} \cos \theta_{2}+\cos \theta_{1} \sin \theta_{1}\right)  \tag{5}\\
& =r_{1} r_{2}\left(\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right.  \tag{5}\\
& \left|z_{1} \cdot z_{2}\right|=r_{1} r_{2}=\left|z_{1}\right|\left|z_{2}\right| \text { (5) }  \tag{5}\\
& \arg \left(z_{1}, z_{2}\right)=\theta_{1}+\theta_{2}=\arg \left(z_{1}\right)+\arg \left(z_{2}\right)
\end{align*}
$$

$z_{1}=2(\cos \pi / 3+i \sin \pi / 3)$

$$
\begin{cases}\left|z_{1}\right|=2 \\ \operatorname{Arg}\left(z_{1}\right)=\frac{\pi / 3}{3} \\ & z_{2}=\sqrt{2}(\cos (-\pi / 4) \\ \left|z_{2}\right|=\sqrt{2}\left(z_{2}\right)=-\pi / 4 \\ \left|z_{1}, z_{2}\right|=\left|z_{1}\right| \cdot\left|z_{2}\right|=2 \sqrt{2} \\ \arg \left(z_{1}, z_{2}\right)=\arg \left(z_{1}\right)+\arg \left(z_{2}\right)  \tag{5}\\ \therefore=\pi / 3-\pi / 4=\frac{\pi}{12}\end{cases}
$$

$$
z_{2}=\sqrt{2}\left(\cos \left(-\frac{5}{4}\right)+i \sin \left(-\frac{1}{2}\right)\right.
$$

$\operatorname{Arg}\left(z_{1} z_{2}\right)=\pi / / 2$
$z_{1} \cdot z_{2}=\left|z_{1} z_{2}\right|\left(\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right)$

$$
=2 \sqrt{2}\left(\cos \frac{\pi}{12}+i \sin \frac{\pi}{12}\right) 5
$$



60

$$
\begin{array}{ll}
\text { c) } & z_{1}=\frac{4}{1-i \sqrt{3}} \\
z_{2}=\frac{4(1+i \sqrt{3})}{\left(1-i^{2} 3\right)} & z_{2}=\frac{2(1-i)}{1-i^{2}} \\
z_{1} & (5) \\
z_{1}=(1+i \sqrt{3}) & z_{2}=1-i \\
z_{1}=2\left(1 / 2+\frac{\sqrt{3}}{2}\right)(5) & z_{2}=\sqrt{2}\left(1 / \sqrt{2}-i \frac{1}{\sqrt{2}}\right)(5)
\end{array}
$$

Page 5

$$
\begin{aligned}
& z_{1}^{3}+2 z_{2}^{4}=2^{3}\left(\cos 3 x \frac{\pi}{4}+i \sin 3 x / 3\right)
\end{aligned}
$$

$$
\begin{aligned}
& =2^{3}[\cos \pi+i \sin \pi+\cos \pi-i \sin \pi] \\
& =2^{3} \times 2 \cdot \cos k \text { (5) } \\
& =16 \quad 1(5)
\end{aligned}
$$

$14 \cdot \quad f(x)=\frac{x+1}{(x+3)^{2}}$

$$
\begin{align*}
f^{\prime}(x) & =\frac{(x+3)^{2}(1)-(x+1) 2(x+3)}{(x+3)^{4}}  \tag{10}\\
& =\frac{(x+3)[x+3-2 x-2]}{(x+3)^{4}} \\
& =-\frac{x-1}{(x+3)^{3}} \\
f^{\prime \prime}(x) & =-\left\{\frac{(x+3)^{3}(1)-(x-1) 3(x+3)^{2}}{(x+3)^{6}}\right\} \text { (10) } \\
& =-\left\{\frac{x+3-3 x+3}{(x+3)^{4}}\right\} \\
& =\frac{2(x-3)}{(x+3)^{4}}
\end{align*}
$$

When $x=0, y=\frac{1}{9}$
when $y=0, x=-1$

$$
\lim _{x \rightarrow-3} f(x)=\infty
$$

Vertical asymptote: $x=-3$ (5)

$$
\lim _{x \rightarrow \pm \infty} \frac{x+1}{(x+3)^{2}}=\lim _{x \rightarrow \pm \infty} \frac{\frac{1}{x}+\frac{1}{x^{2}}}{\left(1+\frac{3}{x}\right)^{2}}=0
$$

Horizontal asymptote: $y=0$ (5)


When $f^{\prime}(x)=0, \quad x=1$ (5) (5)

| $x<-3$ | $-3<x<1$ | $x>1$ |
| :---: | :---: | :---: |
| $f^{\prime}(x)<0$ | $f^{\prime}(x)>0$ | $f^{\prime}(x)<0$ |
| decreasing | increasing | decreasing |

$\begin{array}{lll}(5) & (5) & \text { is a local } \\ \left(1, \frac{1}{8}\right) & \text { maximin } \\ 5)\end{array}$

$$
\begin{equation*}
f^{\prime \prime}(x)=0 \Longleftrightarrow x=3 \tag{5}
\end{equation*}
$$

| $x<-3$ | $-3<x<3$ | $x>3$ |
| :---: | :---: | :---: |
| $f^{\prime \prime}(x)<0$ | $f^{\prime \prime}(x)<0$ | $f^{\prime \prime}(x)>0$ |
| concave down <br> (5) | concave down <br> (5) | concave up |

( $3, \frac{1}{9}$ ) is a point of inflection



$$
\begin{align*}
& h^{2}+r^{2}=3^{2}  \tag{5}\\
& \Rightarrow r^{2}=9-h^{2} \tag{5}
\end{align*}
$$

Volume $\quad V=\frac{1}{3} \pi r^{2} h$

$$
\begin{equation*}
=\frac{1}{3} \pi h\left(9-h^{2}\right) \tag{5}
\end{equation*}
$$

$$
\begin{align*}
\frac{d v}{d h} & =\frac{1}{3} \pi\left(9-3 h^{2}\right) \\
& =-\pi\left(h^{2}-3\right) \\
\frac{d v}{d h} & =0 \Leftrightarrow h=\sqrt{3} \quad[\because h>0] \tag{5}
\end{align*}
$$

For $0<h<\sqrt{3}, \frac{d y}{d h}>0$ and $h>\sqrt{3}, \frac{d y}{d h}<0$
$\therefore V$ is maximum when $W=\sqrt{3}$

$$
\begin{align*}
& h=\sqrt{3} \Rightarrow r=\sqrt{6}  \tag{5}\\
& \quad \tan \alpha=\frac{r}{h}=\frac{\sqrt{6}}{\sqrt{3}}=\sqrt{2}
\end{align*}
$$

$\therefore V$ is maximum when $\alpha=\tan ^{-1}(\sqrt{2})$ 50
Page 6

$$
\begin{align*}
& \text { 15) } \begin{aligned}
& \frac{d \ln \left(x^{2}+1\right)}{d x}=\frac{1}{\left(x^{2}+1\right)} \times 2 x=\frac{2 x}{\left(x^{2}+1\right)} \\
& \int^{\operatorname{lng}} \text { both side wint } x
\end{aligned} \\
& \int \frac{2 x}{x^{2}+1} \tag{5}
\end{align*}=\ln \left(x^{2}+1\right)+c^{1} .
$$

C-arbitary constant

II $\frac{x^{3}+4 x^{2}-4 x+4}{\left(x^{2}+1\right)\left(x^{2}-4\right)}=\frac{A x+B}{\left(x^{2}+1\right)}+\frac{C}{(x-2)}+\frac{D}{(x+1)}$

$$
\begin{gathered}
x^{3}+4 x^{2}-4 x+4=(A x+B)\left(x^{2}-4\right)+C\left(x^{2}+1\right)(x+2) \\
+D\left(x^{2}+1\right)(x-2)
\end{gathered}
$$

$$
\begin{aligned}
& =\frac{x^{2}}{4}-\frac{x \sin 2 x}{4(5)}+\int \frac{\sin 2 x}{4} d x+c \\
& =\frac{x^{2}}{4}-\frac{x \sin 2 x}{4}-\frac{\cos 2 x}{8}+c(5)
\end{aligned}
$$

C-artitarycom

$$
\int x \cos ^{2} x d x+\int x \sin ^{2} x d x=\int x\left(\sin ^{2} x+\cos ^{3} x\right.
$$

$$
\Rightarrow \int x \cos ^{2} x d x=\int x d x-\int x \sin ^{2} x d x
$$

$$
\left.\Rightarrow \int x \cos ^{2} x d x=\frac{x^{2}}{2}-\left(\frac{x^{2}}{4}-\frac{x \sin 2 x}{4}-\frac{\cos ^{2}}{8}\right) \right\rvert\,
$$

$$
x=2 \quad 20 c=20 \Rightarrow c=1
$$

$$
\begin{equation*}
x=-2-20 D=20 \Rightarrow D=-1 \tag{15}
\end{equation*}
$$

con $2 C-2 D-4 B=4 \Rightarrow B=0$
$x^{3} \quad A+C+D=1 \Rightarrow A=1$

$$
\frac{x^{3}+4 x^{2}-4 x+4}{\left(x^{2}+1\right)\left(x^{2}-4\right)}=\frac{x}{x^{2}+1}+\frac{1}{x-2}+\frac{-1}{x+2}
$$

. $\int^{\text {ing both side ruift } x}$

$$
\begin{aligned}
& \int \frac{x^{3}+4 x^{2}-4 x+4}{\left(x^{2}+1\right)\left(x^{2}-4\right)} d x=\int \frac{x d x}{x^{2}+1}+\int \frac{d x}{x-2}-\int \frac{d x}{x+1} \\
& =\frac{\ln \left(x^{2}+1\right)}{2}+\ln |x-2|-\ln |x+2|+k \\
& k-\text { arbitaryconstant } \\
& \frac{55}{-4}
\end{aligned}
$$

b) $\int x \sin ^{2} x d x=\int \frac{x(1-\cos 2 x)}{2} d x$

$$
=\int \frac{x}{2} d x-\int \frac{x \cos 2 x}{2} d x
$$

C]

$$
\left.\begin{array}{l}
x=1+3 \sin ^{2} \theta  \tag{50}\\
x: 1 \rightarrow 4 \quad x=1 \Leftrightarrow \sin ^{2} \theta=0 \\
\theta=0 \\
\theta: 0 \rightarrow \pi / 2 \quad x=4 \Leftrightarrow \sin ^{2} \theta=1 \\
\theta=\pi / 2
\end{array}\right)
$$

Page 7

$$
\begin{equation*}
m=\frac{10 \pm \sqrt{100-4(15)(-9)}}{2 \times 15} \tag{10}
\end{equation*}
$$

Tangents are

$$
y-5=\left(\frac{5 \pm 4 \pi 0}{15}\right)(x-2)
$$

put $\bar{x} \rightarrow x, \bar{y} \rightarrow y$

$$
\begin{align*}
& x \rightarrow x, y \rightarrow y \\
& S \equiv x^{2}+y^{2}-6 x-7=0 \text { (5) }  \tag{say}\\
& (x-3)^{2}+(y, 4)^{2}+4^{2} \\
& \text { centre circle } 0(3,0)  \tag{5}\\
& \text { radius }=4 \\
& Q \equiv(2,5)
\end{align*}
$$

$$
\begin{gathered}
(1,2) \Rightarrow \\
1+4-6-7+\lambda(1-10+13)=0 \\
\lambda=2(5)
\end{gathered}
$$

$C D$

$$
\begin{gathered}
2 x+5 y-3(2+x)-7=0 \\
x-5 y+13=0
\end{gathered}
$$

$S^{\prime}$ Can be Write

$$
x^{2}+y^{2}-6 x-7+\lambda(x-5 y+13)=1
$$

$$
S^{\prime}=x^{2}+y^{2}-4 x-10 y+19=0
$$

$$
\begin{aligned}
\delta^{\prime \prime} \equiv x^{2}+y^{2}+2 g^{\prime \prime} x+2 f^{\prime \prime} y+c^{\prime \prime} & =0 \\
& \text { (say }
\end{aligned}
$$

$$
(0,6) \Rightarrow 0+36+12 f^{\prime \prime}+c^{\prime \prime}=0
$$

The circles $S^{\prime}=0, S^{\prime \prime}=0$ are intersect orthogonal 2 $\left\{\left(g^{\prime \prime}\right)(-2)+\left(f^{\prime}\right)(-5)\right\}=c^{\prime \prime}+19(10)$ $-4 g^{\prime \prime}-10 f^{\prime \prime}=-36-12 f^{\prime \prime}+19{ }^{\prime}$ (by (1) $)$ the circle
The equation of tangent is given by

$$
\begin{align*}
& y-5=m(x-2)(5) \\
& m x-y+(5-2 m)=0 \\
& 4=\left|\frac{m \times 3-0+5-2 m}{\sqrt{m^{2}+6}+2}\right|  \tag{10}\\
& 16\left(m^{2}+1\right)=(m+5)^{2} \\
& 15 m^{2}-10 m+9=0
\end{align*}
$$

30

$$
\begin{aligned}
& \text { Q16] } \\
& \text { Q16] } \\
& P \equiv\left(\frac{20 \cos \theta+15}{5}, \frac{20 \sin \theta+0}{5}\right) \\
& p \equiv(4 \cos \theta+3,4 \sin \theta) \\
& \rho=(\bar{x}, \bar{y}) \text { (say) } \\
& \bar{x}=4 \cos \theta+3 \quad \bar{y}=4 \sin \theta \text { 步 } \\
& \text { but } \cos ^{2} \theta+\sin ^{2} \theta=1 \\
& \left(\frac{25-3}{4}\right)^{2}+\left(\frac{y}{4}\right)^{2}=15 \\
& x^{2}+y^{2}-6 \bar{x}-7=0 \text { (5) }
\end{aligned}
$$

$$
\begin{align*}
& \text { Q17] } \\
& \text { a) } \begin{aligned}
& \sin (A+B)=\sin A \cos B+\cos A \sin B \\
& \begin{aligned}
\sin (A-B) & =\sin g A+(-B)] \\
& =\sin A \cos (-B)+\cos A \sin (-B) \\
& =\sin A \cos B-\cos A \sin B
\end{aligned}
\end{aligned} \quad \begin{array}{l}
\text { b }
\end{array} \\
&
\end{align*}
$$

(1) + (2) $\Rightarrow$
$\sin (A+B)+\operatorname{Sin}(A-B)=2 \sin A \operatorname{Cos} B$

$$
\begin{aligned}
& \text { put } B \rightarrow A \\
& \operatorname{Sin}(2 A)+\operatorname{Sin}(A-A)=2 \operatorname{Sin} A \operatorname{Cos} x= \\
& \operatorname{Sin} 2 A=2 \operatorname{Sin} A \operatorname{Cos} A B \\
&
\end{aligned}
$$

$\cos \theta \cos 2 \theta \cos 3 \theta=\frac{1}{4}$

$$
\begin{aligned}
& \frac{1}{8}\left\{\frac{\sin 7 \theta}{\sin \theta}+1\right\}=\frac{1}{4} \\
& \sin 7 \theta=\sin \theta \\
& 7 \theta=n \pi+(-1)^{n} \theta ; n \in Z \\
& n=0 \Rightarrow \theta=\theta \\
& n=1 \Rightarrow \theta=\frac{\pi}{8} \\
& n=2 \Rightarrow \theta=\frac{\pi}{4} \\
& n=3 \Rightarrow \theta=\frac{3 \pi}{8} \\
& n=4 \Rightarrow \theta=\frac{9 \pi}{3}>\frac{\pi}{2} \\
& \text { sol } \frac{n}{4}-\left\{\frac{\pi}{8}, \frac{\pi}{4}, \frac{3 \pi}{8}\right\} \text { (10) }
\end{aligned}
$$

a
for the triangle $A B D$

$$
\begin{align*}
& \frac{B D}{\sin \alpha}=\frac{A D}{\sin (\theta-\alpha)}  \tag{2}\\
& \frac{\frac{\alpha}{2}}{\sin \alpha}=\frac{A D}{\sin (\theta-\alpha)}  \tag{5}\\
& \frac{a}{2 \sin \alpha}=\frac{A D}{\sin (\theta-\alpha)} \tag{1}
\end{align*}
$$

$$
-\sin \theta\{8 \overline{\cos } \bar{\theta} \cos 2 \bar{\theta} \cos 3 \theta-1\}
$$

$$
=8 \sin \theta \cos \theta \cos 2 \theta \cos 3 \theta-\sin \theta
$$

$$
=4 \sin 2 \theta \cos 2 \theta \cos 3 \theta-\sin \theta
$$

$$
=4 \sin \theta \cos \cos 3 \theta-\sin \theta(\theta)
$$

$\sin \beta\{\sin \theta \cos \alpha-\cos \theta \sin \alpha\}=\sin \alpha(10)$

$$
=\sin 7 \theta+\sin \theta-\sin \theta(5)
$$

$=\sin \theta \cos \beta+C \cos \theta S_{1}$

$$
=\sin 7 \theta
$$

divide by $\sin \alpha \sin \beta \sin \theta$ both
$\cot \alpha-\cot \theta=\cot \beta^{8}+\cot \sigma^{5}$
$-\cot \alpha-\cot \beta=2 \cot 5$ (55
c) $2 \tan ^{-1}\left(\frac{1}{5}\right)+\tan ^{-1}\left(\frac{6}{5}\right)=\frac{\pi}{2}$
$\alpha=\tan ^{-1}\left(\frac{5}{5}\right) \beta=\tan ^{5}\left(\frac{6}{6}\right)$

$$
\Leftrightarrow 2 \alpha+\beta=\frac{\pi}{2}(5)
$$

$$
\Leftrightarrow \quad 2 \alpha=\frac{\pi^{2}}{2} \beta
$$

$\Leftrightarrow 2 \alpha=\frac{\pi}{2}-\beta$
$\Leftrightarrow \tan 2 \alpha=\tan \left(\frac{\pi}{2}-\beta\right)\left(\frac{5}{(5)},\left(\frac{\pi}{2}-\beta\right)\right.$ are
$\tan 2 \alpha=2 \tan \alpha$ (5) $\quad$ acute)

$$
\begin{aligned}
& \tan 2 \alpha=\frac{2 \tan \alpha}{1-\tan ^{2} \pi}(5) \\
& \begin{aligned}
=\frac{2\left(\frac{1}{5}\right)}{1-\frac{1}{25}} \quad \tan \left(\frac{\pi}{2}-\beta\right) & =\frac{6 \pm \neq(5)}{6} \\
= & =\frac{\sigma}{6}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& 2 \tan ^{-1}\left(\frac{6}{5}\right)+\tan ^{-1}\left(\frac{6}{5}\right)=\frac{\pi}{2} \\
& \tan ^{-1}\left(\frac{1}{5}\right)=\frac{\pi}{4}-\frac{1}{2} \tan ^{-1}\left(\frac{6}{5}\right)(5) \\
& \sin ^{-1}\left(\frac{1}{\sqrt{26} 6}\right)=\frac{\text { 委 }}{}-\frac{1}{2} \tan ^{-1} /\left(\frac{6}{5}\right) 1+\frac{12}{26} \\
& \frac{1}{\sqrt{26}}=\sin ^{4}\left\{\frac{3}{4}-\frac{1}{2} \tan \left\{\frac{6}{5}\right\}\right\}_{[35}^{7}
\end{aligned}
$$

